In parts (a) and (b), we consider $\cos \left(2 \pi f_{0} t\right)$.
To find the perceived freq., we will use the "folding technique":
i) Consider the window of freq. from 0 to $\frac{f_{s}}{2}$.
ii) start from 0 , increase the freq. to fo Fold back at 0 and $\frac{f_{s}}{2}$ if necessary.
(a) $f_{0}=1,111,111$

Remainder $=f_{0}-f_{s}\left\lfloor\frac{f_{0}}{f_{s}}\right\rfloor$
$=7 \leftarrow s+i n>\frac{f_{s}}{2}$
$\begin{aligned} & =7 \leftarrow s t: l n>\frac{f_{5}}{2} \\ f_{r}=\frac{f_{s}}{2}-1 & =6-1=5 \mathrm{~Hz}\end{aligned}$

$f_{r}=3 \mathrm{~Hz}$
In parts (c) and (d), we consider $e^{j 2 \pi f_{0} t}$.
To find the "perceived" frequency, we will we the "tunneling technique":
i) consider the window of freq. From $-\frac{f_{s}}{2}$ to $-\frac{f_{s}}{2}$.
ii) start from 0 .

If $f_{0}>0$, increase the freq. to to (going to the right)
This is the restart at $-\frac{f_{s}}{2}$ when $\frac{f_{s}}{2}$ is reached.
"tunneling" part. If $f_{0}<0$, decrease the freq. to f_{0} (going to the left) - restart at $+\frac{f_{s}}{2}$ when $-\frac{f_{s}}{2}$ is reached.
(c) $f_{0}=11,111$

Remainder $=f_{0}-f_{s}\left\lfloor\frac{f_{0}}{f_{s}}\right\rfloor$
$=11$
$\xrightarrow[5]{-\frac{f_{s}}{2}}{ }_{6}^{0}+\frac{f_{s}}{2}$, repeat this $\underbrace{\left.\frac{t_{0}}{f_{s}}\right\rfloor}_{=925}$ times

$$
f_{r}=-1 \mathrm{~Hz}
$$

(d) $f_{0}=-1,111$

$$
\text { Remainder }=7
$$

$$
\begin{array}{cc}
-\frac{f_{s}}{2} & 0 \\
& +\frac{f_{s}}{2} \\
& \text { repeat this }\left\lfloor\frac{\left|f_{0}\right|}{f_{s}}\right\rfloor \text { times }
\end{array}
$$

$f_{r}=5 \mathrm{~Hz}$

Finding the "perceived = frequency of $g(t)=e^{j 2 \pi f_{0} t}$ when the sampling rate is f_{s} : Method 1: Analysis via the reconstruction equation.

First, note that $g(t)=e^{j 2 \pi f_{0} t} \xrightarrow{F} G(f)=\delta\left(f-f_{0}\right)$
With the sampling rate $=f_{s}$, we know that

$$
\sigma_{\delta}(f)=\sum_{k} f_{s} G\left(f-k f_{s}\right)=\sum_{k} f_{s} \delta\left(f-k f_{s}-f_{0}\right)=f_{s} \sum_{k} \delta\left(f-\left(f_{0}+k f_{s}\right)\right)
$$

Now, the reconstruction equation gives
$G_{r}(f)=\operatorname{LPF}\left\{G_{\sigma}(f)\right\}$ where $H_{L P}(f)= \begin{cases}T_{s}, & -\frac{f_{s}}{2}<f \leqslant \frac{f_{s}}{2}, \\ 0, & \text { otherwise. }\end{cases}$

$$
\text { (or, equivalently, } g_{r}(t)=\operatorname{LPF}\left\{g_{\delta}(t)\right\} \text {) }
$$

Therefore, only the parts of $G_{\delta}(f)$ that are between $-\frac{f_{s}}{2}<f \leqslant \frac{f_{s}}{2}$ will survive the LPF (and will also be further scaled by T_{s}). Our task now is then to find all values) of integer k such that

$$
\begin{aligned}
& -\frac{f_{s}}{2}<f_{0}+k f_{s} \leqslant \frac{f_{s}}{2} \\
& -\frac{1}{2}-\frac{f_{0}}{f_{s}}<k \leqslant \frac{1}{2}-\frac{f_{0}}{f_{s}}
\end{aligned}
$$

Note that the difference between these two numbers is one. So, there is exactly one value of k that satisfies such condition.
so, $k=\left\lfloor\frac{1}{2}-\frac{f_{0}}{f_{s}}\right\rfloor$
Note that " L " is the "floor" function.
One may also consider $k=\left\lceil-\frac{1}{2}-\frac{f_{0}}{f_{s}}\right\rceil$. However, because the equality in the condition has equality at the upper-bound, the ceiling function of the lower bound will give the wrong answer when the lower bound is an integer itself. gain the passband of the LPF
This gives $G_{r}(f)=T_{s} f_{s} \delta\left(f-\left(f_{0}+k f_{s}\right)\right)$ where $k=\left\lfloor\frac{1}{2}-\frac{f_{0}}{f_{s}}\right\rfloor$
the only term in $G_{\delta}(f)$ that is in the passband of the LPF

$$
\begin{aligned}
& =\delta\left(f-\left(f_{0}+k f_{s}\right)\right) \\
& \downarrow \mathcal{F}^{-1} \\
g_{r}(t) & =e^{j 2 \pi\left(f_{0}+k f_{s}\right)} \quad \text { where } \quad k=\left\lfloor\frac{1}{2}-\frac{f_{0}}{f_{s}}\right\rfloor .
\end{aligned}
$$

Hence, the "perceived" frequency is $f_{r}=f_{0}+k f_{s}=f_{0}+f_{s}\left\lfloor\frac{1}{2}-\frac{f_{0}}{f_{s}}\right\rfloor$. In part (c), $f_{0}=11,111 \Rightarrow k=\left\lfloor\frac{1}{2}-\frac{11,111}{12}\right\rfloor=\lfloor-925.41\rfloor=-926$

$$
\Rightarrow f_{v}=11,111+(-926) \times 12=-1 \mathrm{~Hz} .
$$

In part (d), $f_{0}=-1,111 \Rightarrow k=\left\lfloor\frac{1}{2}+\frac{1,111}{12}\right\rfloor=\lfloor 93.1\rfloor=93$

$$
\Rightarrow f_{r}=-1,111+93 \times 12=5 \mathrm{~Hz} .
$$

Remark: The plot of $f_{v}=f_{0}+f_{s}\left\lfloor\frac{1}{2}-\frac{f_{0}}{f_{s}}\right\rfloor$ is shown below:

Observe the "tunneling effect":
i) f_{r} is contained between $-\frac{f_{s}}{2}$ and $\frac{f_{s}}{2}$.
ii) $f_{v}=f_{0}$ in the above window
iii) when f_{0} exceed $\frac{f_{s}}{2}$, it "jumps" (or "goes through the tunnel symbolized by the dotted line") back to restart at $-\frac{f_{s}}{2}$.
$i v)$ as a function of f_{0},
f_{r} is periodic with period f_{s}.
\Rightarrow Therefore, instead of considering f_{0}, we may simply consider $f_{t}=f_{0} \bmod f_{s}$
This is implemented in MATLAB by $\bmod \left(f_{0}, f_{s}\right)$
Alternatively, one can use

$$
\left.f_{t}=f_{0}-f_{s} \times \frac{f_{0}}{f_{s}}\right\rfloor .
$$

This leads to method (2) below

Method 2: Use the "tunneling effect" discussed in class (wherein we observe the location of the impulses) shown by our plotspect function).
I) Find $f_{t}=f_{0} \bmod f_{s} \leftarrow$ This gives $f_{t} \in\left[0, f_{s}\right)$ or, equivalently, $f_{t}=f_{0}-f_{s}\left\lfloor\frac{f_{0}}{f_{s}}\right\rfloor$
Think of this as representing the number of "rounds" you start from 0 , go through the tunnel, and back to 0 .
II) $f_{r}= \begin{cases}f_{t}, & \text { if } \\ f_{t}-f_{s}, & \text { if } \\ f_{t}>\frac{f_{s}}{2}, \\ \frac{f_{s}}{2} .\end{cases}$

In part (c), $\left.\begin{array}{rl}f_{0}=11,111 & \Rightarrow f_{t}\end{array}=f_{0} \bmod f_{s}=11>6\right)^{-f_{s} / 2}$

In part (c), $f_{0}=11,111 \Rightarrow f_{t}=f_{0} \bmod f_{s}=11>6$

$$
\Rightarrow f_{r}^{\tau}=f_{t}-f_{s}=11-12=-1 \text {. }
$$

In part (d), $f_{0}=-1,111 \Rightarrow f_{t}=f_{0} \bmod f_{s}=5 \leqslant 6$

$$
\Rightarrow f_{r}=f_{t}=5
$$

Finding the "perceived" frequency of $g(t)=\cos \left(2 \pi f_{c} t\right)$ when the sampling
rate is f_{s}.

$$
\begin{array}{r}
\text { Here, we write } f_{c} \text { instead of } f_{0} \text { because there are } \\
\text { two terms with two freq.: } f_{0}=f_{c} \\
\text { and } f_{0}=-f_{c}
\end{array}
$$

Method 1: From the Euler's formula: $g(t)=\cos \left(2 \pi f_{c} t\right)=\frac{1}{2} e^{j 2 \pi f_{c} t}+\frac{1}{2} e^{j 2 \pi\left(-f_{c}\right) t}$. After sampling, we can apply what we know about the "perceived" frequency of complex-exponential signal to get the "perceived" freq. of each term inside $g(t)$.
In part (a),

$$
\begin{aligned}
& \text { inside } g(t) . \\
& f_{c}=1,111,111 \Rightarrow f_{t}=f_{c} \bmod f_{s}=7>6 \\
& \Rightarrow f_{r}=f_{t}-f_{s}=7-12=-5.2 \\
&-f_{c}=-1,111,111 \Rightarrow f_{t}=\left(-f_{c}\right) \bmod f_{s}=5 \leqslant 6 \\
& \Rightarrow f_{r}=f_{t}=5
\end{aligned}
$$

Therefore, $g_{r}(t)=\frac{1}{2} e^{j(2 \pi(-5) t)}+\frac{1}{2} e^{j(2 \pi(5)) t}=\cos (2 \pi(5) t)$.
The "perceived" frequency is 5 Hz .
In part (b), $f_{c}=111,111 \Rightarrow f_{t}=3 \leqslant 6 \Rightarrow f_{r}=3$
$-f_{c}=-111,111 \Rightarrow f_{t}=9>6 \Rightarrow f_{v}=9-12=-3$
Therefore, $g_{r}(t)=\frac{1}{2} e^{j(2 \pi(3) t)}+\frac{1}{2} e^{j(2 \pi(-3) t)}=\cos (2 \pi(3) t)$
The "perceived" freq. is 3 Hz .
Method 2: When we consider the "perceived freq" of $e^{j 2 \pi f_{c} t}$ which we plotted earlier
with " $\quad e^{j 2 \pi\left(-f_{c}\right) t}$
The perceived freq. of $e^{j\left(2 \pi\left(-f_{c}\right) t\right)}$

Observe that at every f_{C}, for $\cos \left(2 \pi f_{c} t\right)$
its two complex-expo components always gives a pair of
perceived freq., one positive and one negative (except when f_{c} is a multiple of $f_{s} / 2$)
so, the reconstructed signal $g_{0}(t)$ will still be a cosine whose freq. can simply be "read" from the upper part of the plot above:

(Because $\cos (-x)=\cos (x)$, we only answer one freq. for the cosine.)
Observe the "folding effect":
i) "f for cos" is contained between 0 and $\frac{f_{s}}{2}$
ii) " $=f_{c}$ in the above window
$i i \pi)$ when f_{C} exceeds $\frac{f_{s}}{2}$, it folds back towards 0 . when f_{c} reaches 0 , it folds back towards $\frac{f_{s}}{2}$.
$i v)$ as a function of f_{c}, "f, for cos" is periodic with period f_{s}.
Therefore, we can find "f, for cos" by
I) find $f_{t}=f_{c} \bmod f_{s}=f_{c}-f_{s}\left\lfloor\frac{f_{c}}{f_{s}}\right\rfloor$.
II) $f_{r}= \begin{cases}f_{t}, & \text { if } f_{t}<\frac{f_{s}}{2}, \\ f_{s}-f_{t}, & \text { if } f_{t}>\frac{f_{s}}{2} .\end{cases}$

In part (a), $f_{c}=1,111,111 \Rightarrow f_{t}=7>6 \Rightarrow f_{r}=12-7=5 \mathrm{~Hz}$.
In part (b), $f_{c}=111,111 \Rightarrow f_{t}=3<6 \Rightarrow f_{r}=3 \mathrm{~Hz}$.

Problem 2: Aliasing and periodic square wave

First, let's recall some theoretical results we studied earlier. We know, from Example 4.20 in lecture, that

$$
1\left[\cos \omega_{0} t \geq 0\right]=\frac{1}{2}+\frac{2}{\pi}\left(\cos \omega_{0} t-\frac{1}{3} \cos 3 \omega_{0} t+\frac{1}{5} \cos 5 \omega_{0} t-\frac{1}{7} \cos 7 \omega_{0} t+\cdots\right),
$$

where $\omega_{0}=2 \pi f_{0}$.
Here, we have a bipolar square pulse periodic signal $\operatorname{sgn}\left(\cos \omega_{0} t\right)$ which alternates between "-1 and 1 " instead of " 0 and 1 ". Observe that

$$
\operatorname{sgn}\left(\cos \omega_{0} t\right)=2 \times 1\left[\cos \omega_{0} t \geq 0\right]-1
$$

Therefore,

$$
\operatorname{sgn}\left(\cos \omega_{0} t\right)=\frac{4}{\pi}\left(\cos \omega_{0} t-\frac{1}{3} \cos 3 \omega_{0} t+\frac{1}{5} \cos 5 \omega_{0} t-\frac{1}{7} \cos 7 \omega_{0} t+\cdots\right)
$$

Hence, theoretically, its Fourier transform should have spikes (impulses) at all the odd-integer multiples of $\pm f_{0} \mathrm{~Hz}$. The center spikes (at $\pm f_{0}$) should be the largest among them as shown in the Figure below.

In fact, we could even try to predict the height of the spikes shown in the plot as well. Note that, in the script, we consider the time between 0 to 2 sec . Therefore, actually, we are not looking at the signal $\operatorname{sgn}\left(\cos \omega_{0} t\right)$ from $-\infty$ to ∞. This time-limited view means that, in the frequency domain, we won't see the impulses but rather sinc pulses at those mentioned locations. (This is the same as seeing two sinc pulses instead of two impulses when looking at the Fourier transform of the cosine pulse.)

The sinc function is simply the Fourier transform of the rectangular windows. Because the area of the rectangular window is $1 \times 2=2$, its Fourier transform (which is a sinc function) has its peak value of 2 . This is further scaled by a factor of $1 / 2$ from the cosine. Therefore, each "impulse" ("sinc") that we see should have its height being the coefficient of corresponding cosine. For example, at $\pm f_{0}$, the coefficient of the cosine is $\frac{4}{\pi}$. Therefore, we expect the height of the "impulse" at $\pm f_{0}$ to be $\frac{4}{\pi} \approx 1.2732$. The height values for other impulse locations is shown by the pink circles in the plot. We see that our predicted values match the plot quite well.

In the time domain, the switching between the values -1 and 1 should be faster as we increase f_{0}. All the plots here are adjusted so that they show 10 periods of the "original signal" in the time domain. (This is done so that the distorted shape (if any) of the waveform in the time domain is visible.)

From the plots, as we increase f_{0} from 10 to 20 Hz , the locations of spikes changes from all the odd-integer multiples of 10 Hz to all the odd-integer multiples of 20 Hz . In particular, we see the spikes at $\pm 20, \pm 60, \pm 100, \pm 140, \pm 180, \pm 220, \pm 260, \pm 300, \pm 340, \pm 380, \pm 420, \pm 460$. Note that plotspect (by the way that it is coded) only plots from $\left[-f_{s} / 2, \mathrm{f}_{\mathrm{s}} / 2\right.$). So, we see a spike at -500 but not 500 . Of course, the Fourier transform of the sampled waveform is periodic and hence when we replicate the spectrum every f_{s}, we will have a spike at 500 . Note that, in theory, we should also see spikes at $\pm 540, \pm 580, \pm 620, \pm 660$, and so on. However, because the sampling rate is $1000[\mathrm{Sa} / \mathrm{s}]$, these high frequency spikes will suffer from aliasing and "fold back" ${ }^{1}$ into our viewing window $\left[-f_{s} / 2, f_{s} / 2\right)$. However, they fall back to the frequencies that already have spikes (for example, ± 540 will fold back to ± 460, and ± 580 will fold back to ± 420) and therefore the aliasing effect is not easily noticeable in the frequency domain.

[^0]When $f_{0}=40 \mathrm{~Hz}$, we start to see the aliasing effect in the frequency domain. Instead of seeing spikes only at $\pm 40, \pm 120, \pm 200, \pm 280, \pm 360, \pm 440$, the spikes at higher frequencies (such as $\pm 520, \pm 600$, and so on) fold back to lower frequencies (such as $\pm 480, \pm 400$, and so on). The plot in the time domain still looks quite OK with small visible distortion.

At high fundamental frequency $f_{0}=100 \mathrm{~Hz}$, we see stronger effect of aliasing. In the time domain, the waveform does not look quite "rectangular". In the frequency domain, we only see the spikes at $\pm 100, \pm 300$, and 500 . These are at the correct locations. However, there are too few of them to reconstruct a square waveform. The rest of the spikes are beyond our viewing window. We can't see them directly because they fold back to the frequencies that are already occupied by the lower frequencies. Note also that the predicted height (pink circles) at $\pm 300 \mathrm{~Hz}$ is quite different from the plotspect value. This is because the content from the folded-back higher-frequencies is being combined into the spikes.

Our problem can be mitigated by reducing the sampling interval to $T_{S}=1 / 1 e 4$ instead of $T_{S}=$ $1 / 1 e 3$ as shown by the plot on the right above.

Finally, at the highest frequency $f_{0}=300 \mathrm{~Hz}$, if we still use $\mathrm{T}=1 / 1 \mathrm{e} 3$, the waveform will be heavily distorted in the time domain. This is shown in the left plot below. We have large spikes at ± 300 as expected. However, the next pair which should occur at ± 900 is out of the viewing window and therefore folds back to ± 100. Again, the aliasing effect can be mitigated by reducing the sampling time to $\mathrm{T}=1 / 1 \mathrm{e} 4$ instead of $\mathrm{T}=1 / 1 \mathrm{e} 3$. Now, more spikes show up at their expected places. Note that we can still see a lot of small spikes scattered across the frequency domain. These are again the spikes from higher frequency which fold back to our viewing window.
 signal in each part is bendlimited to.

The signals involved in this question are of the form $\operatorname{sinc}\left(2 \pi f_{0} t\right)$. Therefore, we first find a general result for $\operatorname{sinc}\left(2 \pi f_{0} t\right)$. First, we draw $\sin \left(2 \pi f_{0} t\right)$:

Then, we draw the since ($2 \pi f_{0} t$) using the zeroes of $\sin \left(2 \pi f_{0} t\right)$ We then see that the first zero occurs at $\frac{1}{2 f f_{0}}$. Therefore, in the freq. domain, the corresponding rectangular function has width $=2 f_{0}$. So, its boundaries are $\pm f_{0}$.
conclusion: $\operatorname{sinc}\left(2 \pi f_{0} t\right)$ is band limited to $B=f_{0}$
Note that the height of the rectangular function must be $\frac{1}{2 f_{0}}$ to make its area $=1$
(a) $\operatorname{sinc}(100 \pi t)=\sin c(2 \pi \times 50 \times t) \Rightarrow B=50 \mathrm{~Hz}$
(b) Recall that for signals $g_{1}(t)$ bandlinited to B_{1} and

$$
g_{2}(t) \quad \because \quad B_{2}
$$

their product $g_{1}(t) g_{2}(t)$ is band limited to $B_{1}+B_{2}$.
To "see" this (without actually doing the "flip-shift-integrate" for convolution in the freq. domain, imagine

5 of course, $G_{1}(f)$ and $G_{2}(f)$ in $G_{2}(f)$ as a bunch of impulses
this question won't look like these. We draw then this way to make the conclusion easier to see.

Because we have a multiplication in the time domain, we have a convolution in the frequency domain.
The convolution with an impulse is easy:

$$
G_{1}(f) * \delta\left(f-f_{0}\right)=\sigma_{1}\left(f-f_{0}\right) .
$$

So, we simply have replicas of $B_{1}(f)$ at all the impulses' locations
of $\delta_{2}(f)$. Hence, the highest freq. component is at $B_{1}+B_{2}$ and
the lowest freq. component is at $-B_{1}-B_{2}$.
Alternatively, one can look at the convolution of two rectangular functions:

we saw similar convolution as a video earlier in the semester. The result is

Hence, for $\operatorname{sinc}^{2}(100 \pi t), \quad B=50+50=100 \mathrm{~Hz}$
(c) Observe that for signals $g_{1}(t)$ bandlinited to B_{1} and

$$
g_{2}(t) \cdots \quad \cdots B_{2}
$$

their linear combination $c_{1} g_{1}(t)+c_{2} g_{2}(t)$ is bandlimited to $\max \left\{\beta_{1}, \beta_{2}\right\}$.

So, for $\operatorname{sinc}(100 \pi t)+\sin (50 \pi t), \quad B=\max \{50,25\}=50 \mathrm{~Hz}$
(d) Use the observation from parts (b) and (c).

For $\operatorname{sinc}(100 \pi t)+3 \operatorname{sinc}^{2}(60 \pi t), \quad B=\max \{50,2 \times 60\}=120 \mathrm{~Hz}$.
(e) Use the same observation as in part (b).

For $\operatorname{sinc}(50 \pi t) \operatorname{sinc}(100 \pi t), \quad B=25+50=75 \mathrm{~Hz}$.
Now that we know the max freq. B of our signals:
The Nyquist sampling rate is $2 \times B$.
The Nyquist sampling interval is $\frac{1}{2 B}$.
The table below summarizes the answers for this question:

	$f_{\text {max }}$	$R_{\text {Nyquist }}[\mathrm{Sa} / \mathrm{s}]$	$T_{\text {Nyquist }}[\mathrm{sec}]$
(a)	50	100	0.01
(b)	100	200	0.005
(c)	50	100	0.01
(d)	60	120	$1 / 120$
(e)	75	150	$1 / 150$

The signal under consideration is $g(t)=\operatorname{sinc}(\pi t)$.

(a) The Fourier transform
(b) The Nyquist sampling rate is given by $2 \times f_{\max }=2 \times \frac{1}{2}=1 \mathrm{samble} / \mathrm{sec}$.
(c) In class, we have seen that

$$
G_{\delta}(f)=f_{s} \sum_{n=-\infty}^{\infty} \sigma\left(f-n f_{s}\right) \quad \text { where } \quad f_{s}=\frac{1}{T_{s}} \text {. }
$$

(c.i) With $T_{s}=\frac{1}{2}$, we have

(c.ii) With $T_{s}=\frac{4}{3}$, we have

(d. i)

With $T_{s}=1, \quad g[n]=g\left(n T_{s}\right)=g(n \times 1)=g(n)=\operatorname{sinc}(\pi n)$.
(d.i.i) From the plot of $\operatorname{sinc}\left(\pi_{n}\right)$ drawn earlier, we have

$$
g[n]= \begin{cases}1, & n=0, \\ 0, & \text { otherwise. }\end{cases}
$$

(d.i.ii) Because $g[n]=0$ when $n \neq 0$,

$$
g_{r}(t)=g[0] \sin c(\pi t)=1 \times \operatorname{sinc}(\pi t)=\sin c(\pi t)=g(t)
$$ Note that with $T_{s}=1$, we have $f_{s}=1$ which is the same as the Nyquist sampling rate. Therefore, we are at the borderline of the success ul reconstruction.

(d.iï) Reminder: MATLAB's sine function is $\operatorname{sinc}(x)=\sin (\pi x) / \pi x$, which is different from $\operatorname{sinc}(\alpha)=\sin (\alpha) / x$ that we defined for our class. Therefore, when we use MATLAB to plot $\operatorname{sinc}(\pi t)$, we do not put the " π " in the formula. MATLAB will automatically insert the "ת" for us.

n－ンーン…，ン
$g_{r}(t) \neq g(t) \quad n=0,-7, \cdots, \div ー$

Observation：As we increase the number of terms in the summation，$g(t)$ is better approximated by $g_{r}(t)$ ．

[^0]: ${ }^{1}$ Because the squarewave is real and even, the Fourier transform is also real and even. Therefore, the "folding effect" is equivalent to the "tunneling effect".

